FIRST ORDER LOGIC

based on

Huth \& Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004

First order logic

 (also called predicate logic)- Essentially, first order logic adds variables in logic formulas

Assume we have three cats (Anna, Bella, Cat), and cats have tails.

In propositional logic, we could write:
iscatAnna, iscatBella, iscatCat, iscatAnna \rightarrow hastailAnna, iscatBella \rightarrow hastailBella, iscatCat \rightarrow hastailCat.

In first order logic, we would write: iscat(anna), iscat(bella), iscat(cat), $\forall \mathrm{X}($ iscat(X) \rightarrow hastail(X))

Terms

- Terms are defined as follows:
- any variable is a term
- if $c \in \mathcal{F}$ is a nullary function (no parameters), then c is a term
- if $t_{1}, t_{2}, \ldots, t_{n}$ are terms and f is a function of arity $n>0$ then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a term
- nothing else is a term

Terms

- Examples of well-formed terms, assuming f is a function of arity $2, g$ is a function of arity $1, c$ is a function of arity o:
- $f(g(c), g(g(c)))$
- $f(f(g(c), c), g(c))$
- $g(g(g(f(c, c))))$
- Examples of baldy-formed terms, for the above functions:
- $f(c)$
- $f(c, c) \rightarrow g(c)$

First order logic

- (Well-formed) formulas in first order logic for a set of functions symbols \mathcal{F} and predicate symbols \mathcal{P} are obtained by using the following construction rules, and only these rules, a finite number of times:
- If P is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms over \mathcal{F}, then $P\left(t_{1}, \ldots, t_{n}\right)$ is a well-formed formula.
- if ϕ is a well-formed formula, then so is $(\neg \phi)$
- if ϕ and ψ are well-formed formulas, then so is $(\phi \wedge \psi)$
- if ϕ and ψ are well-formed formulas, then so is $(\phi \vee \psi)$
- if ϕ and ψ are well-formed formulas, then so is $(\phi \rightarrow \psi)$
- if ϕ is a formula and x is a variable, then $(\forall x \phi)$ and $(\exists x \phi)$ are formulas

Universal Quantifier

- \forall denotes the universal quantifier
- It can be read as "for all"
$\forall X(\operatorname{iscat}(X) \rightarrow \operatorname{hastail}(X))$
"for all X it is true that if X is a cat, then X has a tail"

Confusion about capitals

$\forall X(\operatorname{iscat}(X) \rightarrow$ hastail $(X))$
$\forall x(\operatorname{Iscat}(x) \rightarrow \operatorname{Hastail}(x))$
both notations can be used, as long as you do this consistently!

Existential Quantifier

- \exists denotes the existential quantifier
- It can be read as "there is"
$(\exists X$ student $(X)) \rightarrow(\exists Y$ university $(Y))$
"if there is an X which is a student, then there is an Y which is a university"

First order logic

- Given the following predicate symbols:
- $S(x, y): x$ is a son of y
- $F(x, y): x$ is the father of y
- $B(x, y)$: x is a brother of y
the following are well-formed formulas:
- $\forall x \forall y \forall z(F(x, y) \wedge S(y, z) \rightarrow B(x, z))$
- $\forall x \forall y(S(x, y) \rightarrow F(y, x))$
- $\forall x \forall y(F(x, y) \rightarrow S(x, y))$
- $\forall x((\exists y S(x, y)) \rightarrow(\exists z F(x, z)))$

Note: formulas are well-formed
if their syntax is correct

Free \& bound variables

- We can build parse trees for formulas

$$
(\forall x(P(x) \wedge Q(x))) \rightarrow(\neg P(x) \vee Q(y))
$$

binary node for binary connective unary node for quantifiers, unary connective

Free \& bound variables

- A quantifier for variable x binds all variables x occurring below its corresponding node in the parse tree; a variable which is not bound is free
- If there is no free variable, the formula is closed

Semantics of

First Order Logic

- Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols, each symbol with a fixed number of arguments. An interpretation \mathcal{I} of the pair $(\mathcal{F}, \mathcal{P})$ consists of the following data:
- A non-emptyset A, the universe of values
- For each nullary function symbol $f \in \mathcal{F}$ a, a concrete element $f^{\mathcal{I}}$ of A
- for each $f \in \mathcal{F}$ with arity $n>0$, a concrete function $\mathcal{F}^{\mathcal{I}}: A^{n} \rightarrow A$ from A^{n}, the set of n-tuples over A, to A
- for each $P \in \mathcal{P}$ with arity $n>0$, a subset $P^{\mathcal{I}} \subseteq A^{n}$ of n tuples over A

Interpretations

- Assuming f is a function of arity $2, g$ is a function of arity $1, c$ is a function of arity 0 , and P is unary
- A possible interpretation is:
- $A=\{0,1,2\}$
- $c^{\mathcal{I}}=0$
- $g^{\mathcal{I}}(0)=1, g^{\mathcal{I}}(1)=2, g^{\mathcal{I}}(2)=2$
$f^{\mathcal{I}}(x, y)=\min (2, x+y)$
- $P^{\mathcal{I}}=\{0,2\}$

For a given formula, we will define when the interpretation makes it true

Interpretations

- Given an interpretation:
- $A=\{0,1,2\}$
- $c^{\mathcal{I}}=0$
- $g^{\mathcal{I}}(0)=1, g^{\mathcal{I}}(1)=2, g^{\mathcal{I}}(2)=2$

$$
f^{\mathcal{I}}(x, y)=\min (2, x+y)
$$

- $P^{\mathcal{I}}=\{0,2\}$
- Examples of formulas that are true for this interpretation:
- $P(c) \wedge P(g(g(c)))$
- $\exists X P(g(g(X))$

Look-up Tables

- A look-up table for a universe A of values and variables var is a function: l : var $\rightarrow A$ from the set of variables V to $A \quad l(x)$ may be undefined for some x
- We denote by $l[x \mapsto a]$ the look-up table in which variable x in var is mapped to value a in A, and all other values y are mapped to $l(y)$

Given $l(X)=1, l(Y)=2$.
The look-up table denoted by $l[X \mapsto 3]$ is the look-up table in which $l(X)=3, l(Y)=2$

Satisfaction of Formulas

- Given an interpretation \mathcal{I} for a pair $(\mathcal{F}, \mathcal{P})$ and given a look-up table for all free variables in formula ϕ, we define the satisfaction relation $\mathcal{I} \models_{l} \phi$ as follows:
- If ϕ is of the form $P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, then we interpret the terms t_{1}, \ldots, t_{n} by replacing all variables with their values according to l. In this way we compute values $a_{1}, \ldots a_{n}$ of A, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{I}}$. Now $\mathcal{I} \models_{l} P\left(t_{1}, \ldots, t_{n}\right)$ holds iff $\left(a_{1}, \ldots, a_{n}\right)$ is in the set $P^{\mathcal{I}}$.
- ...

Satisfaction of Formulas

- Given an interpretation \mathcal{I} for a pair $(\mathcal{F}, \mathcal{P})$ and given a look-up table for all free variables in formula ϕ, we define the satisfaction relation $\mathcal{I} \models_{l} \phi$ as follows:
- If ϕ is of the form $\forall x \psi$, then $\mathcal{I} \models_{l} \forall x \psi$ holds iff $\mathcal{I} \models_{l[x \mapsto a]} \psi$ holds for all a in A
- If ϕ is of the form $\exists x \psi$, then $\mathcal{I} \models_{l} \forall x \psi$ holds iff $\mathcal{I} \models l[x \mapsto a] \psi$ holds for some a in A
- If ϕ is of the form $\neg \psi$, then $\mathcal{I} \models_{l} \neg \psi$ holds iff $\mathcal{I} \models_{l} \psi$ does not hold
- If ϕ is of the form $\psi_{1} \wedge \psi_{2}$, then $\mathcal{I} \models_{l} \psi_{1} \wedge \psi_{2}$ holds if both $\mathcal{I} \models_{l} \psi_{1}$ and $\mathcal{I} \models_{l} \psi_{2}$ hold and similar for \vee and \rightarrow

Satisfaction of Formulas

- If ϕ is a closed formula, then interpretation \mathcal{I} is a model for ϕ, denoted by $\mathcal{I} \models \phi$, iff $\mathcal{I} \models_{l} \phi$ (where l does not define an image for any of the variables)
- Checking whether an interpretation is a model essentially requires grounding
$\forall x \exists y P(x, y)$ for $A=\{1,2\}$:
Time consuming...
$\Leftrightarrow(\exists y P(1, y)) \wedge(\exists y P(2, y))$
$\Leftrightarrow(P(1,1) \vee P(1,2)) \wedge(P(2,1) \vee P(2,2))$

Entailment

- First order logic formula ϕ semantically entails first order logic formula ψ, denoted by $\phi \models \psi$, iff all models of formula ϕ are also models for formula ψ.
- Natural deduction rules can also be defined for firstorder logic (but will not be discussed here)

Bad news

$\phi \models \psi$ is undecidable: no algorithm can exist to decide this relation for any pair of formulas

Horn Clauses

- A first-order logic formula is a Horn clause iff
- it is closed
- it is a formula of the form

$$
\forall x_{1} \cdots \forall x_{n}\left(l_{1} \vee \cdots \vee l_{m}\right)
$$

i.e., it is a disjunction of literals, and all variables are universally quantified

- it has at most one positive literal
$\forall x \forall y \forall z(\neg F(x, y) \vee \neg S(y, z) \vee B(x, z))$
$\forall x \forall y \forall z(F(x, y) \wedge S(y, z) \rightarrow B(x, z))$
$\forall x \forall z((\exists y(F(x, y) \wedge S(y, z))) \rightarrow B(x, z))$

Logic Programming

- Resolution can also be defined for clauses in first order logic and is the basis of logic programming
$\forall x \forall y \forall z(F(x, y) \wedge S(y, z) \rightarrow B(x, z))$
In the Prolog language:
b(X,Z) :- f(X,Y), s(Y,Z)
f(anna,bill).
Given knowledge
s(bill,jack).
:- b(anna,jack)
True.

Query
Answer

