FIRST ORDER LOGIC

based on

Huth & Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004

First order logic

(also called predicate logic)

 Essentially, first order logic adds variables in logic formulas

Assume we have three cats (Anna, Bella, Cat), and cats have tails.

In **propositional logic**, we could write: iscatAnna, iscatBella, iscatCat, iscatAnna → hastailAnna, iscatBella → hastailBella, iscatCat → hastailCat.

In **first order logic**, we would write: iscat(anna), iscat(bella), iscat(cat), $\forall X$ (iscat(X) \rightarrow hastail(X))

Terms

- Terms are defined as follows:
 - any variable is a term
 - ullet if $c \in \mathcal{F}$ is a nullary function (no parameters), then $\,c\,$ is a term
 - if t_1, t_2, \ldots, t_n are terms and f is a function of arity n>0 then $f(t_1, t_2, \ldots, t_n)$ is a term
 - nothing else is a term

Terms

- Examples of well-formed terms, assuming f is a function of arity 2, g is a function of arity 1, c is a function of arity o:
 - f(g(c),g(g(c)))
 - f(f(g(c),c),g(c))
 - g(g(g(f(c,c))))
- Examples of baldy-formed terms, for the above functions:
 - \bullet f(c)
 - $f(c,c) \rightarrow g(c)$

First order logic

- (Well-formed) formulas in first order logic for a set of functions symbols \mathcal{F} and predicate symbols \mathcal{P} are obtained by using the following construction rules, and only these rules, a finite number of times:
 - If P is a predicate symbol of arity n and t_1,\ldots,t_n are terms over $\mathcal F$, then $P(t_1,\ldots,t_n)$ is a well-formed formula.
 - ullet if ϕ is a well-formed formula, then so is $(\neg\phi)$
 - ullet if ϕ and ψ are well-formed formulas, then so is $(\phi \wedge \psi)$
 - ullet if ϕ and ψ are well-formed formulas, then so is $(\phi ee \psi)$
 - ullet if ϕ and ψ are well-formed formulas, then so is $(\phi o \psi)$
 - if ϕ is a formula and x is a variable, then $(\forall x\phi)$ and $(\exists x\phi)$ are formulas

Universal Quantifier

- denotes the universal quantifier
- It can be read as "for all"

```
\forall X \ ( \operatorname{iscat}(X) \rightarrow \operatorname{hastail}(X) )
```

"for all *X* it is true that if *X* is a cat, then *X* has a tail"

Confusion about capitals

$$\forall X (iscat(X) \rightarrow hastail(X))$$

 $\forall x (Iscat(x) \rightarrow Hastail(x))$

both notations can be used, as long as you do this consistently!

Existential Quantifier

- denotes the **existential quantifier**
- It can be read as "there is"

 $(\exists X \operatorname{student}(X)) \rightarrow (\exists Y \operatorname{university}(Y))$

"if there is an *X* which is a student, then there is an *Y* which is a university"

First order logic

- Given the following predicate symbols:
 - S(x,y): x is a son of y
 - F(x,y): x is the father of y
 - B(x,y): x is a brother of y

the following are well-formed formulas:

- $\bullet \ \forall x \forall y \forall z (F(x,y) \land S(y,z) \to B(x,z))$
- $\forall x \forall y (S(x,y) \to F(y,x))$
- $\forall x \forall y (F(x,y) \rightarrow S(x,y))$
- $\forall x((\exists y S(x,y)) \to (\exists z F(x,z)))$

Note: formulas are well-formed if their syntax is correct

Free & bound variables

• We can build parse trees for formulas $(\forall x \, (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$

Free & bound variables

- A quantifier for variable *x* **binds** all variables *x* occurring below its corresponding node in the parse tree; a variable which is not bound is **free**
- If there is no free variable, the formula is closed

Semantics of First Order Logic

- Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols, each symbol with a fixed number of arguments. An **interpretation** \mathcal{I} of the pair $(\mathcal{F}, \mathcal{P})$ consists of the following data:
 - A non-emptyset *A*, the universe of values
 - ullet For each nullary function symbol $f \in \mathcal{F}$ a, a concrete element $f^{\mathcal{I}}$ of A
 - for each $f \in \mathcal{F}$ with arity n>0, a concrete function $\mathcal{F}^{\mathcal{I}}: A^n \to A$ from A^n , the set of n-tuples over A, to A
 - for each $P \in \mathcal{P}$ with arity n>0, a subset $P^{\mathcal{I}} \subseteq A^n$ of n-tuples over A

Interpretations

- Assuming f is a function of arity 2, g is a function of arity 1, c is a function of arity 0, and P is unary
- A possible interpretation is:
 - $\bullet A = \{0, 1, 2\}$
 - $c^{\mathcal{I}} = 0$
 - $g^{\mathcal{I}}(0) = 1, g^{\mathcal{I}}(1) = 2, g^{\mathcal{I}}(2) = 2$ $f^{\mathcal{I}}(x, y) = \min(2, x + y)$
 - $P^{\mathcal{I}} = \{0, 2\}$

For a given formula, we will define when the interpretation makes it true

Interpretations

- Given an interpretation:
 - $A = \{0, 1, 2\}$
 - $c^{\mathcal{I}} = 0$
 - $g^{\mathcal{I}}(0) = 1, g^{\mathcal{I}}(1) = 2, g^{\mathcal{I}}(2) = 2$ $f^{\mathcal{I}}(x, y) = \min(2, x + y)$
 - $P^{\mathcal{I}} = \{0, 2\}$
- Examples of formulas that are true for this interpretation:
 - $P(c) \wedge P(g(g(c)))$
 - $\bullet \exists X \ P(g(g(X)))$

Look-up Tables

- A look-up table for a universe A of values and variables var is a function: $l: var \rightarrow A$ from the set of variables V to A l(x) may be undefined for some x
- We denote by $l[x \mapsto a]$ the look-up table in which variable x in var is mapped to value a in A, and all other values y are mapped to l(y)

Given l(X)=1, l(Y)=2. The look-up table denoted by $l[X\mapsto 3]$ is the look-up table in which l(X)=3, l(Y)=2

Satisfaction of Formulas

- Given an interpretation \mathcal{I} for a pair $(\mathcal{F}, \mathcal{P})$ and given a look-up table for all free variables in formula ϕ , we define the satisfaction relation $\mathcal{I} \models_l \phi$ as follows:
 - If ϕ is of the form $P(t_1, t_2, \ldots, t_n)$, then we interpret the terms t_1, \ldots, t_n by replacing all variables with their values according to l. In this way we compute values $a_1, \ldots a_n$ of A, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{I}}$. Now $\mathcal{I} \models_l P(t_1, \ldots, t_n)$ holds iff (a_1, \ldots, a_n) is in the set $P^{\mathcal{I}}$.

• ...

Satisfaction of Formulas

- Given an interpretation \mathcal{I} for a pair $(\mathcal{F}, \mathcal{P})$ and given a look-up table for all free variables in formula ϕ , we define the satisfaction relation $\mathcal{I} \models_l \phi$ as follows:
 - If ϕ is of the form $\forall x \ \psi$, then $\mathcal{I} \models_l \forall x \ \psi$ holds iff $\mathcal{I} \models_{l[x\mapsto a]} \psi$ holds for **all** a in A
 - If ϕ is of the form $\exists x \ \psi$, then $\mathcal{I} \models_l \forall x \ \psi$ holds iff $\mathcal{I} \models_{l[x\mapsto a]} \psi$ holds for **some** a in A
 - If ϕ is of the form $\neg \psi$, then $\mathcal{I}\models_l \neg \psi$ holds iff $\mathcal{I}\models_l \psi$ does not hold
 - If ϕ is of the form $\psi_1 \wedge \psi_2$, then $\mathcal{I} \models_l \psi_1 \wedge \psi_2$ holds if both $\mathcal{I} \models_l \psi_1$ and $\mathcal{I} \models_l \psi_2$ hold

and similar for \vee and \rightarrow

Satisfaction of Formulas

- If ϕ is a closed formula, then interpretation \mathcal{I} is a **model** for ϕ , denoted by $\mathcal{I} \models \phi$, iff $\mathcal{I} \models_l \phi$ (where l does not define an image for any of the variables)
- Checking whether an interpretation is a model essentially requires grounding

```
\forall x \exists y P(x,y) \text{ for } A=\{1,2\}: Time consuming... \Leftrightarrow (\exists y P(1,y)) \land (\exists y P(2,y)) \Leftrightarrow (P(1,1) \lor P(1,2)) \land (P(2,1) \lor P(2,2))
```

Entailment

- First order logic formula ϕ semantically entails first order logic formula ψ , denoted by $\phi \models \psi$, iff all models of formula ϕ are also models for formula ψ .
- Natural deduction rules can also be defined for firstorder logic (but will not be discussed here)

Bad news

 $\phi \models \psi$ is undecidable: no algorithm can exist to decide this relation for any pair of formulas

Horn Clauses

- A first-order logic formula is a Horn clause iff
 - it is closed
 - it is a formula of the form

$$\forall x_1 \cdots \forall x_n (l_1 \vee \cdots \vee l_m)$$

i.e., it is a disjunction of literals, and all variables are universally quantified

• it has at most one positive literal

$$\forall x \forall y \forall z (\neg F(x,y) \lor \neg S(y,z) \lor B(x,z))$$
$$\forall x \forall y \forall z (F(x,y) \land S(y,z) \to B(x,z))$$
$$\forall x \forall z ((\exists y \ (F(x,y) \land S(y,z))) \to B(x,z))$$

Logic Programming

 Resolution can also be defined for clauses in first order logic and is the basis of logic programming

```
\forall x \forall y \forall z (F(x,y) \land S(y,z) \rightarrow B(x,z)) In the Prolog language: \begin{array}{l} b(X,Z) := f(X,Y), \ s(Y,Z) \\ f(anna,bill). \\ s(bill,jack). \end{array} Given knowledge s(bill,jack). = b(anna,jack) \blacktriangleleft \qquad \qquad Query True. \blacktriangleleft \qquad \qquad Answer
```